Computation of the generalized Mittag-Leffler function and its inverse in the complex plane
نویسندگان
چکیده
The generalized Mittag-Leffler function Eα,β (z) has been studied for arbitrary complex argument z ∈ C and parameters α ∈ R+ and β ∈ R. This function plays a fundamental role in the theory of fractional differential equations and numerous applications in physics. The Mittag-Leffler function interpolates smoothly between exponential and algebraic functional behaviour. A numerical algorithm for its evaluation has been developed. The algorithm is based on integral representations and exponential asymptotics. Results of extensive numerical calculations for Eα,β (z) in the complex z-plane are reported here. We find that all complex zeros emerge from the point z = 1 for small α. They diverge towards −∞+ (2k − 1)π i for α → 1− and towards −∞+ 2kπ i for α → 1+ (k ∈ Z). All the complex zeros collapse pairwise onto the negative real axis for α → 2. We introduce and study also the inverse generalized Mittag-Leffler function Lα,β (z) defined as the solution of the equation Lα,β (Eα,β (z)) = z. We determine its principal branch numerically.
منابع مشابه
Autoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملMatrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملSOME INTEGRAL TRANSFORMS OF THE GENERALIZED k-MITTAG-LEFFLER FUNCTION
In the paper, the authors generalize the notion “k-Mittag-Leffler function”, establish some integral transforms of the generalized k-Mittag-Leffler function, and derive several special and known conclusions in terms of the generalized Wright function and the generalized k-Wright function. 1. Preliminaries Throughout this paper, let C, R, R0 , R, Z − 0 , and N denote respectively the sets of com...
متن کامل